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The buckling of a compressed rod in the presence of nonstationary creep is considered. 
In certain nominal instability criteria [I], the buckling moment is related to the change in 
rod deflection after the perturbation is applied. The [2] criterion defines the perturba- 
tion moment for which the deflection rate is zero as a special point on the time scale sepa- 
rating the conditionally stable deformation from the unstable region. In accordance with it, 
stability means reduction in deflection at the start of perturbation. Similarly, the de- 
flection acceleration as zero [3] defines a further singular point in the deformation. The 
distinction of such points has been extended to higher derivatives [4]. The points are called 
pseudobifurcation ones. In their determination, one equates to zero the derivatives with re- 
spect to time of all orders for the deflection, apart from the one corresponding to the 
pseudobifurcation order. 

Here is distinguished singular points in the strain on the basis of the initial trans- 
critical behavior of the higher derivatives without those constraints on the deflection de- 
rivatives. 

The creep in a hinge-supported rod with length s area of cross section F, which is 
compressed by a longitudinal force T is considered. The defining formula is specified, whose 
general form is derived from the condition for similarity in the creep curves [5]: 

~h(p) = ](~) (i) 

(p = s - o/E is the creep strain). 

From (i) after linearization we get as follows for small increments in the state of 
stress--strain corresponding to small deviations from the rectilinear state: 

A~h (p) + A p f h '  (p) = f" (o) A~. 

A prime denotes a derivative of a function with respect to its argument. Instead of 
time t we introduce p: 

d(Ap) h'(p) 1' A~. ( 2 )  
dp + Ap h (P----T = -i- 

We integrate (2) with the initial conditions 5p = ~P0, P = P0 to get 

= A~h (p) dp ( 3 )  

In accordance with the planar-section hypothesis, 

A~ = z ( w = -  wo,=), (4) 

in which Wxx is the second derivative of the deflection with respect to the longitudinal co- 
ordinate x, while w 0 is the initial deflection derived by perturbation at time p = P0, and z 

is the transverse coordinate. We put 

Ap =zv= (5) 

(v is a function of x). We specify the forms of the functions 

w = U(p ) s in~x ,  w o=  Cosin~x,  ( 6 )  

v = V ( p ) s i n k x ,  ~ = ~/l. 

We u s e  ( 4 ) - ( 6 )  w i t h  5o = E(As - 5p)  t o  g e t  t h e  s t r e s s  i n c r e m e n t s  a s  

Ao = E z L 2 ( V ( p ) +  Co-- U ( p ) ) s i n s  ( 7 )  
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The equilibrium equation i s  

The latter two equations give 

j~ AozdF = -- Tw. 
F 

in which ~ = T/T0; T 0 
the basis of (9): 

[V0 

( i -  o)U(p)= V(p)+Co, 
= EIX 2 is the critical load for an elastic rod. 

A6 = -EzX2U (p ) co sin ),x. 

We substitute this into (3) to get 

u ( p ) ( t  - ~o) - -  c o  - - -  

= V(p0)]. The solution to (i0) is 

J' (Po) 
h (p) ( ) l" (oE U (p) h (p) dp = 0 Vo + lh (p~) 

PO 

U (p) -- 1 -- ~o 1 ( p t ~  exp (k (p -- Po)) ~ eXPh (p)(kP) h' (p) exp (-- kp) dp 

Po 

With p = P0, from (9) or (ii) we get 

( k  = ( l ' l i )  r ~ l ( t  - ~)),  

(8) 

( 9 )  

We r e w r i t e  (7)  on 

+ V~ h-(P-~~ exp (k (p --  Po)) 
i--~o h(p) 

U ( p o ) = ( c o  + v o ) / ( t  - o~). 

We calculate the derivatives of the (Ii) deflection with respect to time. 

(P = P0), they are 

~'(po) = #o(Cok + Vo(k  - q ) ) / 0  - o~), 

{J (Po) = "P~ (C/~ (k - -  2q) + V o (k 2 - -  3qk %- 2q 2 - -  qJ)/(l -- co L 

(io) 

(11) 

( i 2 )  

At: the start 

(13) 

2, .... These expressions may be written for 

( 1 4 )  

in which q = h'(p0)/h(p0); qj = dJq/dpJ; j = i, 
any order N as 

u(N) (Po) = P$ (CoDN -}- VoBN)/(t - (o). 

Here the polynomials D N and B N are constructed as follows: 

N--I 

Dl = k, D N =  k D N - 1 - -  ~ DiCNFN-i,  N = 2, 3, . . . ,  
i = i  

N--1 

B o =  1, B I v = k B ~ ' - I - -  X B~C~FN-i, N = t , 2  . . . .  , C'i ~ = -  
i=0 

The auxiliary functions FN(p) fit the rule 

~y 
F ~ = q ,  F ~ , + : = r ~ . - - ( N - - 1 ) F N F ~ ,  N I,O 

N! 
~! (N -- O!" 

(15) 

We can analyze the behavior of the deflection after perturbation from (12)-(15). If the 
derivatives of the deflection with respect to time are zero, this corresponds to certain 
singular points on the time scale. When there is no creep strain (V 0 = 0), those points 
are the roots of the polynomials D N (N = I, 2 .... ). The common root of the polynomials is 
zero: k = 0. We denote the other roots by kDN to get 

kD2= 2q, kD3=(5q ~ 1 2 q ~ +  q2)/2. (16)  

The right-hand sides in (16) are dependent on P0, while the left-hand ones are dependent 
on the stress. In particular, if h(p) = pa, then q = ~/P0, ql = -a/p~, and then for a given 
load there is a singular point on the scale or in time. 

Similarly, if C o = 0 (rod without initial curvature), one gets singular points that are 
roots of the polynomials BN: 

k~, = q, k~2 = ( 3 q  • ~4q, + q2)/2. (17)  

The point kB1 = q corresponds to the Rabotnov-Shesterikov criterion [2] and kD2 = 2q to 
the Kurshin criterion [i]. 
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Consider another situation. Let the deflection at the start be zero for C o z 0 and 
V 0 ~ 0, which is possible if C o = -V 0 [i]. Zero deflection derivatives at that instant will 
correspond to special points in the strain. For the derivatives of order N, we have 

U ~ '  (po) = : C ~ H ~ / ( 1  - ~ ) ,  

in which H N = D N - B N. We write out the first few polynomials HN: 

H1 =q ,  H2 = kq + q l -  2q ~, H3 = k2q + k ( q l -  5q2) - 7qql+ q2 + 6q 3. 

We represent the roots as 

k,2 = 2q -- q~/q, k,3 = (5q - qdq • 7 (q,/q)2 + t8q~ - 4q2/q + q2)/2. (18)  

The s i n g u l a r  p o i n t s  g e n e r a t e d  by t h e  H N can be d e r i v e d  i n  a d i f f e r e n t  way by r e p l a c i n g  
t h e  i n i t i a l  c o n d i t i o n  ( 5 ) .  Le t  i n t e r n a l  s t r e s s e s  o c c u r  in  t h e  form Ao = zSxx (S i s  a f u n c t i o n  
o f  x) as  a r e s u l t  o f  a c e r t a i n  p e r t u r b a t i o n  a t  p = P0. We t a k e  S as  S = R(p)  s i n X x  and use  
t h e  e q u i l i b r i u m  e q u a t i o n  (8)  w i t h  (6)  t o  g e t  R(p)  = E~U(p).  On t h e  (4)  p l a n a r  s e c t i o n  hypo-  
t h e s i s ,  

Ap = -~2z(U(p)  (t - ~ ) -  C0) sin ix, (19)  
A p o = - ~ 2 z ( R o ( t / o -  l ) / E - C o ) s i n ~ x  (Ro=R(po)  ). 

We s u b s t i t u t e  ( 1 9 ) i n t o  (3)  and i s o l a t e  t h e  e q u a t i o n  f o r  U(p) ,  which  i s  a n a l o g o u s  t o  
(10)  bu t  w i t h  V 0 r e p l a c e d  by Ro(1 /~  - 1 ) / E  - C 0. Then i n s t e a d  o f  (12)  and (14)  we have  t h e  
following expressions for the deflection and its derivatives with respect to time of order 
N for p = P0: 

U ~ (po) = p~ (CoU~/O -- ~) + RoB~/(E~)). 

We put C O = 0 to find the (17) singular points kBN , and with R 0 = 0 we find the singular 
points kHN. In the latter case, as in the derivation of the kHN points, the initial deflec- 
tion U(p0) is zero. 

We consider a special case of (i): f = Ao n, h(p) = pa. We introduce the dimensionless 
parameter $, which performs the function of time and is monotonically related to it: $ = 
pnEF/(T 0 - T). The solutions from (16)-(18) are denoted by the same subscripts as k. We 
have 

~t  = a, ~2 = ( 3 a •  ~a2_ 4~)/2, ~2  = 2~, ~ 3 = ( 5 ~ •  ?~2_ 12~)/2, 

~2 = t + 2a, ~ - s = ( 5 a  § t ~ ~a 2 -  1 8 a -  3)/2, 

The values of ~ for the higher derivatives are derived for a = i. To facilitate the 
calculations, we use the simple recurrence formulas 

B e = t ,  B , = ~ - - t ,  B x = ( 1 - 2 N ) B ~ _ I + ~ B ~ _ ~  D , = ~ ,  D ~ = ~ - 2 ~ ,  

D ~ + ~ = - ( I + 2 N ) D ~ + ~ 2 D ~ _  t - ( - l ) ~ ( 2 N - 3 ) ~ t  N = 9  3, 

Tab le  1 g i v e s  t h e  min imal  p o s i t i v e  v a l u e s  o f  t h e  r o o t s .  For  odd N, D N and H N do n o t  
have r o o t s ,  and t h e  same a p p l i e s  t o  B N f o r  N even .  The s e q u e n c e s  a r e  m o n o t o n i c a l l y  i n c r e a s -  
ing  and do n o t  have  uppe r  bounds .  When one p a s s e s  t h r o u g h  a r o o t ,  t h e  v a l u e  o f  t h e  p o l y -  
nomia l  a l t e r s  f rom n e g a t i v e  t o  p o s i t i v e ,  so t h e  s i g n s  o f  t h e  c o r r e s p o n d i n g  d e r i v a t i v e s  a l t e r .  
This  does  n o t  c o n f l i c t  w i t h  t h e  b e h a v i o r  o f  t h e  s i n g u l a r  p o i n t s .  The p e r t u r b a t i o n s  a p p l i e d  
t o  t h e  rod  b e f o r e  a s i n g u l a r  p o i n t  i n c r e a s e  l e s s  r a p i d l y  t h a n  t h o s e  a f t e r  i t .  The ~B~ r e p r e -  
s e n t s  t h e  m o s t l h a z a r d o u s  p o i n t  ( z e r o - o r d e r  p s e u d o b i f u r c a t i o n  [ 4 ] ) .  D e f l e c t i o n  p e r t u r b a t i o n s  
d e f i n e d  e a r l i e r  t h a n  SBx a r e  r e d u c e d  a t  t h e  i n i t i a l  i n s t a n t  and a r e  i n c r e a s e d  i f  ~ > ~B~- 

There  a r e  t h u s  s i n g u l a r  p o i n t s  in  t h e  d e f o r m a t i o n  on t h e  t i m e  s c a l e  t h a t  have  a r e a l  
p h y s i c a l  s i g n i f i c a n c e .  One can i d e n t i f y  t h e  d e t a i l e d  r e l a t i o n  be tween  t h e s e  p o i n t s  and t h e  

TABLE 1 

N ~BN ~-DNa ";t~ N ~BN ~DN 

1,00 

2~2 
2,00 

470 
3~0 

3,65 

4,97 
670 7,47 

9,71 
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buckling moment from experiment, as has been done for the pseudobifurcation points [6]. The 
singular points for N = 4 may be closest to experiment. If there is no hardening (a = 0), 
degeneracy occurs in the $BN, SDN singular points (as occurs with many stability criteria for 
creep). This cannot be said about the SHN points. For ~ = 0 we have $H2 = 1.00, SH~ = 1.78, 
$H6 = 2.54. 

2. 

3. 

4. 
5. 
6. 
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